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Phase competition in a one-dimensional three-orbital Hubbard-Holstein model
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We study the interplay between the electron-phonon (e-ph) and on-site electron-electron (e-e) interactions
in a three-orbital Hubbard-Holstein model on an extended one-dimensional lattice using determinant quantum
Monte Carlo. For weak e-e and e-ph interactions, we observe a competition between an orbital-selective Mott
phase (OSMP) and a (multicomponent) charge-density-wave (CDW) insulating phase, with an intermediate
metallic phase located between them. For large e-e and e-ph couplings, the OSMP and CDW phases persist,
while the metallic phase develops short-range orbital correlations and becomes insulating when both the e-e
and e-ph interactions are large but comparable. Many of our conclusions are in line with those drawn from a
prior dynamical mean-field theory study of the two-orbital Hubbard-Holstein model [Phys. Rev. B 95, 121112(R)
(2017)] in infinite dimension, suggesting that the competition between the e-ph and e-e interactions in multiorbital
Hubbard-Holstein models leads to rich physics, regardless of the dimension of the system.
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I. INTRODUCTION

Multiorbital iron-based superconductors (FeSCs) remain
a significant research problem in condensed-matter physics
[1–3]. While most of the FeSCs host quasi-two-dimensional
FeAs or FeSe layers, a quasi-one-dimensional (1D) structure
was discovered recently in BaFe2S3 [4], which has spurred
interest in quasi-1D multiorbital models [5–8]. BaFe2S3 has the
geometry of a two-leg ladder, and its low-temperature magnetic
structure is ferromagnetic (FM) in the ladder direction and
antiferromagnetic (AFM) in the leg direction [4,5]. Based on
its magnetic properties, and the partially filled Fe orbitals at
the Fermi level [5,9], it is natural to believe that the electron-
electron (e-e) interactions play a critical role in determining
the characteristics of BaFe2S3 and other FeSCs [10].

To date, theoretical studies of correlated multiorbital models
have revealed many new phenomena, such as a Hund metal
[11–13] and the orbital-selective Mott phase (OSMP) [14–18].
These concepts are central to our understanding of FeSCs.
At the same time, however, there is some evidence that the
electron-phonon (e-ph) interaction can also be important in
these materials. For example, e-ph interactions have been
proposed as pairing mediators in FeSe monolayers grown on
oxide substrates [19–24], although the idea is under debate
[25–27]. Moreover, there is experimental evidence that the
low-energy electronic properties of the FeSC are modified
by the e-ph interaction, as inferred from Raman [28] and
infrared spectroscopy [29], optical conductivity measurements
[30], and time-resolved photoemission [31]. On a theoretical
front, early ab initio calculations found that the e-ph coupling
strength in FeSCs is minimal, with total dimensionless cou-
plings λ ∼ 0.2, and insufficient to establish the observed super-
conducting transition temperatures Tc [32]. Several follow-up

studies have examined the influence of electronic and magnetic
correlations and orbital degrees of freedom on the e-ph inter-
action in multiorbital systems [27,31,33–36]. Each has found
nontrivial effects and enhanced couplings, indicating that the
role of the e-ph interaction may be more subtle than initially
expected. Studying e-ph interactions in multiorbital materials
is, therefore, an open problem. This issue is also relevant to the
quasi-1D organic superconductors of the Bechgaard and Fabre
salt families [37].

A simplified class of models describing the combined e-ph
and Coulomb interactions are the Hubbard-Holstein (HH)
models. In the single-band case, the competition between local
Coulomb repulsion and the attractive e-ph interaction leads
to a phase transition between antiferromagnetic and charge-
density-wave (CDW) order at half-filling [38–44]. This phase
transition has been studied extensively in different dimensions
[38,39,42], as a function of doping [42,43,45], and using many
different methods [38,39]. For example, an early dynamical
mean-field theory (DMFT) study on the Bethe lattice found that
this phase transition is continuous for small e-ph couplings and
discontinuous for large couplings [39,46]. This conclusion dif-
fers from that of determinant quantum Monte Carlo (DQMC)
calculations on a two-dimensional lattice, which found that
the phase transition remains continuous for large couplings at
high temperatures [38,47]. The phase transition in the one-
dimensional HH model is also complicated. No Mott phase
transition occurs in the absence of the e-ph interaction, and the
Mott-insulating phase exists for any on-site Coulomb repulsion
U > 0 [48]. Conversely, in the absence of e-e interactions,
the critical value of the e-ph coupling strength exists for the
formation of a CDW phase due to quantum fluctuations of
the phonon field [49–52]. Retardation effects are also more
prominent in one dimension at strong couplings [49,53] when
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compared with the infinite-dimensional case [39]. Thus, while
a variety of techniques find a robust phase transition between
the CDW and the Mott phases in all dimensions, the details
of the transition can differ in important ways. It is therefore
important to study HH models in different dimensions and to
use different approaches to obtain a complete physical picture.

Another critical factor in the single-band HH model is the
degree of electron doping. For example, at half-filling, the
CDW and antiferromagnetic Mott phases are separated by
a metallic phase at weak e-ph coupling on the Bethe lattice
[46]. But at small hole doping, phase separation of the CDW
and the metallic phases [54] occurs. In two dimensions and
at a quarter filling, a charge-ordered antiferromagnetic phase
appears for strong Coulomb repulsion instead of the usual
Q = (π/a,π/a) antiferromagnetic phase [55]. For quarter
filling in one dimension, and at weak e-ph coupling, the
antiferromagnetic phase separates into an antiferromagnetic
phase and a correlated singlet phase [56]. These results indicate
that many new states can arise in the doped single-band HH
model. It is then natural to wonder how orbital degrees of
freedom enter into this problem.

To date, multiorbital extensions of the HH model have
received comparably less attention [35,57–61]. In Ref. [35],
some of the current authors examined orbital-selective behav-
iors in a degenerate two-orbital HH model (with inequivalent
bandwidths) at half-filling using single-site DMFT [35]. We
found that the combined e-ph and on-site e-e interactions
resulted in many competing phases including metallic, Mott,
and CDW insulating phases, an OSMP, and a lattice-driven
orbital-selective Peierls insulator (OSPI) analog to the OSMP.

Our prior study was carried out in infinite dimensions,
where DMFT is exact; however, given the dependence on
dimensionality found for the single-orbital HH model, it is
essential to study the problem in other dimensions, as a function
of doping, and with different techniques. Motivated by this,
here we present a complementary study of the three-orbital HH
model defined on an extended 1D chain at an average electron
filling 〈n̂〉 = 4. We study the model using DQMC, which is a
nonperturbative auxiliary-field technique capable of handling
both the e-e and e-ph interactions on an equal footing.

Previous studies of this three-orbital 1D Hubbard model
found that it exhibits a rich variety of phases including block
antiferromagnetism, ferromagnetism, and several types of
OSMPs [7,8,18]. As such, the model provides an excellent
starting point for studying the impact of the e-ph coupling on
such physics. Our results show that the e-ph interaction further
modifies the boundaries of these phases by introducing addi-
tional competition with the CDW tendencies. By working on an
extended lattice, we can study momentum-resolved quantities.
Our main results are summarized in Fig. 1, which provides a
schematic of the phase diagram of the model. (A more precise
diagram with quantitative boundaries is provided at the end
of our analysis; see Fig. 11.) We find four distinct regions in
the λ-U parameter space, where λ and U parametrize the e-ph
and e-e interactions, respectively. For small λ and large U we
find an OSMP phase consistent with a block antiferromagnetic
OSMP reported in prior work [7,8]. For large λ and small U we
find an insulating CDW phase with mixed q ordering. These
two phases are separated by a metallic (M) phase at weak
λ and U , which persists into the region where U and λ are

FIG. 1. A sketch of the λ-U phase diagram for our model as
inferred from our DQMC calculations. Four distinct regions are
found, which include states with metallic (M) characteristics, an
orbital-selective Mott region (OSMP), a charge-density-wave (CDW)
order, and a region with strong orbital correlations (OC) and insu-
lating characteristics. The level diagrams sketch the dominant elec-
tronic configurations in each region. Here, W denotes the electronic
bandwidth.

comparable to one another; however, if the two interactions
are made sufficiently large but still comparable, the metallic
state develops short-range orbital correlations (OCs), resulting
in insulating behavior. Our results show that metallicity can be
lost in the presence of large e-e and e-ph interactions due to
the formation of short-range correlations. We also demonstrate
that the addition of e-ph interactions to multiorbital Hubbard
models can strongly influence the phases of the model and that
this occurs irrespective of the dimension, filling, or mechanism
underlying other orbital-selective behaviors.

II. METHODS

A. Model Hamiltonian

Our starting point is a simplified one-dimensional three-
orbital Hubbard model, first introduced in Ref. [7]. We then
add a Holstein-type interaction, where the atomic displacement
is coupled to the electron density on each orbital. The full
Hamiltonian is H = H0 + He-e + Hlat + He-ph, where

H0 = −
∑
〈i,j〉

σ,γ,γ ′

tγ γ ′c
†
i,γ,σ cj,γ ′,σ +

∑
i,σ,γ

(�γ − μ)n̂i,γ,σ (1)

are the noninteracting electronic terms,

Hlat =
∑

i

[
P̂ 2

i

2M
+ M�2

2
X̂2

i

]
= �

∑
i

(
b
†
i bi + 1

2

)
(2)

are the noninteracting lattice terms,

He-e = U
∑
i,γ

n̂i,γ,↑n̂i,γ,↓ +
(

U ′ − J

2

) ∑
i,σ,σ ′
γ < γ ′

n̂i,γ,σ n̂i,γ ′,σ ′

+J
∑

i,γ<γ ′
Sz

i,γ Sz
i,γ ′ (3)
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are the on-site Hubbard and Hund’s interaction terms, and

He-ph = α
∑
i,γ,σ

X̂i n̂i,γ,σ = g
∑
i,γ,σ

(b†i + bi )n̂i,γ,σ (4)

are the e-ph coupling terms. Here, 〈· · · 〉 denotes a sum over
nearest neighbors; c

†
i,γ,σ (ci,γ,σ ) creates (annihilates) a spin

σ electron in orbital γ = 1,2,3 on site i; b
†
i (bi ) creates

(annihilates) a phonon on lattice site i; Sz
i,γ is the z component

of the spin operator Si,γ ; n̂i,γ,σ = c
†
i,γ,σ ci,γ,σ is the number

operator; and X̂i and P̂i are the lattice position and momentum
operators, respectively. The parameters �γ are the on-site
energies for each orbital, tγ,γ ′ are the intra- and interorbital
hopping integrals, U and U ′ are the intra- and interorbital
Hubbard interactions, respectively, and J is Hund’s coupling.
The parameter g = α√

2M�
is the strength of the e-ph coupling

and � is the phonon energy. Finally, μ is the chemical potential,
which fixes the average particle number.

In Eq. (3) we have neglected the pair-hopping and spin-
flip terms of Hund’s interaction, as was done in Ref. [18]
for the same model without e-ph interactions. These terms
introduce a significant fermion sign problem [62] for our
DQMC calculations and are therefore neglected to make the
problem tractable. Prior work [8] has shown that these terms
only change the location of the various phase boundaries for the
model considered here in the absence of the e-ph interaction.
We proceed, therefore, assuming that this will also hold true
once the phonons are included in our calculations.

B. Model parameters

Throughout this work, we choose U ′ = U − 2J , as is
standard for enforcing rotational symmetry [63], although
we have neglected the pair-hopping and spin-flip terms in
Eq. (3). We further vary U while holding J = U/4 fixed. This
choice produces a robust OSMP [7,8,18] in the absence of the
e-ph interaction and is appropriate for the FeSCs. We work
at a fixed filling 〈n̂〉 = 4, which is typical for three-orbital
Hubbard models used to describe the 2D FeSCs [64]. We
expect that the same filling is needed to describe the quasi-
one-dimensional system BaFe2S3. This choice of filling also
allows us to make direct comparisons to previous studies in the
absence of the e-ph interaction [7,8,18]. In this spirit, we also
set t11 = t22 = −0.5 eV, t33 = −0.15 eV, t13 = t23 = 0.1 eV,
t12 = 0 eV, �1 = −0.1 eV, �2 = 0 eV, �3 = 0.8 eV, and
� = 0.5 eV, again following Refs. [18] and [7]. The total
bandwidth of the noninteracting model is W = 2.45 eV, which
serves as the unit energy. The dimensionless e-ph coupling
constant is defined as λ = α2/(M�2W ). (Note that since this
is a multiband system, different choices of bandwidths are
possible. Here, we select the total bandwidth, as was done in
Ref. [35].) Finally, we set a = M = 1 as units of distance
and mass, respectively, and work at an inverse temperature
β = 14.7/W unless stated otherwise; this temperature is low
enough to identify the ordering tendencies in the model.

C. Methods

We use DQMC to solve the 1D three-orbital HH
model. The general details of the method can be found in

Refs. [65–67], while the aspects that are unique to the Holstein
phonons can be found in Refs. [47] and [68]. Throughout
this work, we use a one-dimensional chain with a chain size
N = 16 and imaginary-time discretization of �τ = 0.245/W ,
unless otherwise stated. In all of our simulations, we have not
observed significant �τ errors introduced by this choice.

DQMC calculates the electron Green’s function G(k,τ )
defined in the imaginary-time τ axis. In Sec. III B we will
examine the spectral properties of our model, which requires
an analytic continuation to the real frequency axis. Here, we
used the maximum-entropy method (MEM) [69,70].

III. RESULTS

In this study, we will focus on the four phases resulting from
the competition between on-site Coulomb repulsion and the e-
ph interaction. The four phases are metal, charge-density-wave
phase, orbital-selective Mott phase, and orbital-correlated
state, as shown in Fig. 1. They are identified by examining the
evolution of the single and double occupations on each orbital,
the spectral weight, and the charge-density-wave susceptibility.
We will discuss the particular variation of these quantities as a
function of parameters in the following sections.

A. Weak electron-phonon coupling

Previous studies of this model without phonons showed that
an OSMP forms for U values in the range 0.6 < U/W < 2 for
our choice of J . In this state, orbital 3 becomes insulating while
the remaining orbitals host itinerant electrons [7,8]. The onset
of this phase is signaled by the fact that the filling on orbital 3
is 〈n̂3〉 = 1. For U/W > 2, orbitals 1 and 2 retain a noninteger
filling but are driven into an insulating state by the onset of
short-range orbital ordering [18]. To avoid this complication,
we restrict ourselves to the U/W < 1 region.

We now examine the impact of the e-ph interaction on the
OSMP. Figure 2 plots the electronic occupations of the three
orbitals for different values of U/W and λ. For λ = 0, Fig. 2(c)
shows that 〈n̂3〉 converges to 1 as U/W increases, implying
that a Mott gap is formed on this orbital for U/W � 0.4.
At the same time, 〈n̂1〉 and 〈n̂2〉 maintain noninteger values,
implying that these orbitals remain itinerant [see Figs. 2(a) and
2(b)]. These results are consistent with previous studies [7,8].
When we include the e-ph coupling, the orbital occupations
are modified significantly. For example, Figs. 2(d)–2(f) show
that the e-ph coupling tends to make electronic occupations on
all three orbitals uniform when U/W < 0.4, with the average
filling on each orbital approaching 〈n̂γ 〉 = 4

3 when λ is large.
This value of the occupation on each orbital is consistent with
a charge-ordered state where two sites are fully occupied and
one site is empty, which is shown in the CDW region of Fig. 1.
This kind of charge order arises from the attractive interaction
mediated by the e-ph interaction [71]. For the fully occupied
site, the attractive interaction can be mapped into a negative
effective U for all three orbitals at this site in the large-� limit.
For an empty site, the effective interaction is not modified by
the e-ph coupling. Therefore, the effective Hubbard interaction
is not uniform in real space if there is a density modulation.
When the e-ph coupling is strong, this nonuniform attractive
interaction can produce a charge-ordered state but with a
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FIG. 2. The variation of electronic densities on the three orbitals
as a function of the Hubbard U and the e-ph coupling strength λ.
Panels (a)–(c) show the variation of electronic densities as a function
of the Hubbard U on orbitals γ = 1, 2, and 3, respectively. Similarly,
panels (d)–(f) show the change of electronic densities as a function of
λ on the same three orbitals. In each panel, error bars smaller than the
marker size have been suppressed for clarity, and a smoothing spline
is used as a guide to the eye.

uniform average occupation on each orbital. The transition
from a CDW phase to an OSMP can be seen in Fig. 2(c),
where 〈n̂3〉 decreases from 4

3 to 1 at λ = 0.33. Increasing the
e-ph coupling pushes this transition to larger values of U/W ;
for example, for λ = 0.41 it occurs at U/W ∼ 0.5.

The competition between the CDW and OSMP tendencies is
also manifest in the behavior of the orbital’s double occupation
Dγ = 〈n̂γ,↑n̂γ,↓〉 − 〈n̂γ,↑〉〈n̂γ,↓〉, as summarized in Fig. 3.
When the phonon-mediated effective attraction overcomes the
Coulomb repulsion, we expect Dγ > 0; otherwise, Dγ < 0.
Figures 3(a)–3(c) present Dγ as a function of U/W for
fixed values of λ, where we find that Dγ decreases as U is
increased, and D3 converges to − 1

4 in the limit of a strong
Hubbard interaction, consistent with a Mott-insulating state
where double occupation is suppressed. Figures 3(d)–3(f)
alternatively plot the data as a function of λ for fixed values
of U/W . Here, we find that for U/W < 0.4, Dγ increases as
λ increases and converges to 2

9 on each orbital. This value is
consistent with the double occupations expected for the CDW
phase shown in Fig. 1.

The electronic density and double occupations provide
indirect evidence of the CDW phase. To obtain more
direct evidence of a CDW order, we calculated the charge
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FIG. 3. The variation of double occupancies on the three orbitals
as a function of the Hubbard U and the e-ph coupling strength λ.
Panels (a)–(c) show the variation of double occupancies as a function
of the Hubbard U on orbitals γ = 1, 2, and 3, respectively. Similarly,
panels (d)–(f) show the change of double occupancies as a function of
λ on the same three orbitals. In each panel, error bars smaller than the
marker size have been suppressed for clarity, and a smoothing spline
is used as a guide to the eye.

susceptibility

χc
γ,γ ′ (q) = 1

N

∫ β

0
dτ 〈n̂q,γ (τ )n̂q,γ ′ (0)〉, (5)

where q is the momentum, τ is the imaginary time, n̂q,γ =∑
i,σ eiqRi n̂i,γ,σ , and Ri is a lattice vector.
Figure 4 shows the momentum dependence of the three

intraorbital charge susceptibilities for U/W = 0 and different
e-ph coupling strengths. At weak coupling (i.e., λ = 0.0 and
0.06), χc

γ,γ (q) is small, with no clear peak at any momenta. This
observation implies that a finite value of λ is needed for charge
correlations to develop at this temperature, and is consistent
with the one-dimensional Holstein model [43]. As the value
of λ is increased, a clear peak structure forms in χc

γγ (q).
For instance, already at λ = 0.18 we find a peak centered
at q = π/a for all three orbitals, indicating the formation
of a two-sublattice charge correlation at β = 14.7/W . Upon
further cooling of the system, we find that additional charge
correlations develop at a second q point. For example, Fig. 5
compares χc

γ,γ (q) at β = 14.7/W and 49/W for the λ = 0.15
and U/W = 0 case. For temperature β = 14.7/W , χc

γ,γ (q)
has a single peak at q = π/a; however, as the temperature is
decreased to β = 49/W , χc

γ,γ (q) increases and a second peak
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FIG. 4. Momentum dependence of charge correlation function
χc

γ,γ (q) for orbital 1 (a), orbital 2 (b), and orbital 3 (c) at different
λ values. The Hubbard U/W = 0. In each panel, error bars smaller
than the marker size have been suppressed for clarity.

forms at q ∼ 2π/3 − 3π/4, which is evident as a shoulder
in χc

γ,γ (q). To better recognize these two peaks, we plot as a
guide-to-the-eye the sum of two Lorentzian functions centered
at q = 2π/3a (dash-dotted line) and q = π/a (dotted line).

The two peak structures in χc
γ,γ (q) likely reflect different

ordering tendencies. The charge configurations sketched in
Fig. 1 are consistent with q1 ≈ 2π/3a and q2 = π/a orderings.
We propose, therefore, that the CDW state is characterized
by a superposition of | . . . 660660 . . . 〉 and | . . . 606660 . . . 〉
configurations along the chain, where the number indicates the
number of carriers on each site. These charge configurations
are consistent with the values of the orbitally resolved single
and double occupancies discussed previously. In fact, these
two peaks reflect two different values of 2kF that appear in this
multiorbital model; the Fermi momentum for orbitals 1 and
2 is ∼ 0.33π/a, while the Fermi momentum for orbital 3 is
∼ 0.5π/a. Thus, these two peak values correspond to q = 2kF

in the weak-coupling limit, where the CDW tendencies are
driven primarily by nesting conditions. When we increase the
e-ph coupling further, the kF for orbitals 1 and 2 increases
to 0.5π/a. Therefore, we expect that only one peak will be

FIG. 5. Momentum dependence of charge correlation function
χc

γ,γ (q) for orbital 1 (a), orbital 2 (b), and orbital 3 (c) at different β

values. The Hubbard U/W = 0 and λ = 0.15. The black dashed lines
are eye-guided lines for a combination of two Lorentzian functions
with different peak positions. The two Lorentzian functions are shown
with dotted and dash-dotted lines, respectively. In each panel, error
bars smaller than the marker size have been suppressed for clarity.

observed in the charge-density-wave susceptibility in the limit
of strong e-ph coupling.

We now turn to the spectral weight of the three orbitals in
the vicinity of the Fermi level EF to assess whether the various
phases we observe are insulating or not. The spectral weight
can be estimated directly from the imaginary-time Green’s
function using the relationship [72]

βGγ (r = 0,β/2) = β
∑

k

∫
dω sech(βω/2)Aγ (k,ω), (6)

where Aγ (k,ω) is the orbitally resolved spectral function. At
low temperature, the function β sech(βω/2) is sharply peaked
around ω = EF = 0 and thus provides a measure of the spectral
weight integrated over a window of a few β−1 of EF.

Figure 6 plots βGγ (r = 0,β/2) for the three orbitals for
different values of U/W and λ. In Figs. 6(a)–6(c), the spectral
weight of each orbital is plotted as a function of U for
fixed λ. In the absence of the e-ph interaction (λ = 0), the
spectral weight of all three orbitals decreases as the Hubbard
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FIG. 6. The variation of the spectral weight for the three orbitals
as a function of the Hubbard U and the e-ph coupling strength λ.
Panels (a)–(c) show the variation of spectral weights as a function of
the Hubbard U for three orbitals, respectively. Panels (d)–(f) show
the change of spectral weights as a function of λ for three orbitals,
respectively. In each panel, error bars smaller than the marker size
have been suppressed for clarity, and a smoothing spline is used as a
guideline to the eye.

U increases. However, the spectral weight on orbital γ = 3
decreases more rapidly than the other two orbitals, consistent
with the formation of an OSMP [18]. [The small but nonzero
value of βG3(r = 0,β/2) is due to the elevated temperature of
the simulation.] As the value of λ increases, we begin to see
the loss of spectral weight in all three orbitals when U/W is
small.

Figures 6(d)–6(f) plot βGγ (r = 0,β/2) as a function of λ

for fixed U/W . For U/W = 0, the spectral weight of all three
orbitals is suppressed as the e-ph coupling is increased. We
further observe a sudden decrease in the spectral weight of all
three orbitals for λ � 0.15, where a prominent peak in χc

γ,γ (k)
is observed. Thus, for λ � 0.15 and U/W = 0, the system is
an insulating state driven by CDW correlations. The behavior
of the spectral weight is qualitatively similar for U/W < 0.2,
however the transition to the CDW phase occurs at larger values
of λ as U/W increases. Based on these results, we conclude
that the CDW phase is insulating.

Unlike the OSMP, we do not find any orbital-selective
behavior associated with the formation of the CDW phase; the
rate at which the spectral weight approaches zero appears to be
the same for all three orbitals at this temperature. This result is
in contrast to the degenerate two-orbital case with inequivalent

bandwidths [35], where orbital-selective CDW behavior was
found. This difference could be attributed to changes in the total
bandwidth, dimensionality, or model. (For example, the current
model has inequivalent bandwidths and crystal-field splittings,
while the former only had inequivalent bandwidths.) Further
studies will be needed to better understand the differences
between these two cases.

We now return to the competition between the OSMP
and CDW phases. Figures 6(a)–6(c) reveal that the spectral
weight decreases as the strength of the e-ph is increased when
U/W is small. For a fixed value of λ 
= 0, βGγ (r = 0,β/2)
initially increases with U/W before reaching a maximum
value and decreases along the U axis. This behavior reflects the
competition between the e-ph and the e-e interactions [38,73].
At small U/W the CDW correlations dominate, for large U/W

the OSMP correlations dominate, and for intermediate values
of λ a metallic phase is realized.

B. Spectral properties of the CDW phase

The spectral function of the OSMP was studied in detail
in Ref. [18] in the absence of e-ph interactions. We will
focus, therefore, on the spectral function of the CDW phase.
Figure 7 shows the spectral function for U = 0 and λ =
0.33 and its orbitally resolved components. The system is
insulating, with a large CDW gap and broadened spectral
features, consistent with our spectral weight analysis. The
upper bands of three orbitals have dispersions with a clear
folded shape, while the lower bands of orbitals 1 and 2 have
a more cosinelike dispersion. This cosinelike shape arises
from the combination of an incoherent peak and an additional
peak arising from thermally activated transitions to states with
additional phonons excited [74]. To better recognize these
two peaks, Figs. 7(e)–7(l) plot the spectral functions at fixed
momentum k = 0, π/a, π/4a, and 3π/4a for orbitals 1 and
2. The red dashed curve denotes Lorentzian fits of the data
allowing for an incoherent peak above and below the Fermi
level and an additional thermally excited peak below the Fermi
level. The fitting results are consistent with the Maxent results.
We find that the thermally excited state is located around
E = −2.5 eV and is momentum-independent, consistent with
previous results for the one-dimensional single-band spinless
Holstein model [74]. The folded band is observed at k = 0 and
k = π/a and at k = π/4a and k = 3π/4a, respectively. The
intensity of the incoherent peak below the Fermi level in the
folded band is much weaker than that of the thermally excited
peak, leading to a cosine shape observed in the upper panels
of Fig. 7.

C. Strong electron-phonon coupling

Our previous single-site DMFT study of the two-orbital HH
model at half-filling observed a direct transition between the
OSMP and CDW phase in the strong e-ph coupling limit [35],
with no intervening metallic phase. In contrast, for the current
model, we find evidence for an orbitally correlated insulating
state located between the CDW phase and OSMP at strong
couplings. Figure 8 shows the spectral function [Fig. 8(a)]
and its three orbitally resolved components [Figs. 8(b)–8(d)]
at U/W = 1, λ = 0.6, and β = 29.4/W , where a gap is
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FIG. 7. Spectral functions for U = 0 and λ = 0.33. Panels (b), (c), and (d) are the orbital 1, 2, and 3 components of the spectral function
in (a), respectively. Panels (e), (f), (i), and (j) are spectral functions of the orbital 1 at momentum k = 0, k = π

a
, k = π

4a
, and 3π

4a
, respectively.

Similarly, (g), (h), (k), and (l) are spectral functions of the orbital 2 at those four momenta. The black dashed lines show three peak positions
in the maximum entropy results. The red dotted lines are Lorentzian fitting results.

clearly observed. The spectral function is similar to the CDW
case shown in Fig. 8, however the origin of the gap is not
CDW correlations since χc

γ,γ ′(q) (not shown) is small in this

state. Also, the double occupation Dγ ≈ − 1
9 < 0 (see Fig. 2),

indicating the Coulomb interaction is the dominant interaction
in this phase.

The nature of this OC phase is sketched on the left side of
Fig. 9. It consists of one site where all three orbitals are fully
occupied and two neighboring sites that are half-filled and in a
high-spin state. This electronic configuration is consistent with
the observed orbital occupations and the value of the double
occupation Dγ = − 1

9 .
In the HH model, the intra- and interorbital Hubbard inter-

actions Ueff and U ′
eff are renormalized by the e-ph interaction,

and the ground state can change based on the value of these
effective Hubbard interactions. Figures 9(a) and 9(b) show
two types of charge fluctuations that are possible within the
proposed OC state. The potential energy costs of these fluctua-
tions are PE ∼ Ueff + J and PE ∼ −2(U ′

eff − J ), respectively.
To estimate the magnitude of these energies, we performed
an exact diagonalization calculation in the atomic limit and

compared the ground-state energies of the shown atomic
configurations. For U/W = 1 and λ = 0.6, we find that these
two potential energies are 1.305 and 0.815 eV, respectively.
When the orbital hybridization is introduced, the total potential
energy cost is compensated for by a kinetic energy gain of
KE ≈ t11 = 0.5 eV. However, the ratio PE

KE > 1 in both cases,
suggesting that charge fluctuations are suppressed, and the
system will be insulating. The conditions for forming the OC
insulating state are then U ′

eff − J < 0 and Ueff + J > 0, which
in turn requires that the e-ph coupling strength is not too strong;
otherwise, the CDW phase is formed. (Note that a larger Hund’s
coupling favors satisfying these two conditions.) In the OC
insulating state, the fully occupied site and two half-occupied
sites can be arranged randomly in a long chain as the energy
cost will not change. Therefore, short-range orbital correlations
would be sufficient to produce insulating behavior at finite
temperature.

We can confirm the presence of OC by examining the equal-
time orbital correlation function

Tγγ ′(d) = 1

N

∑
i

〈(n̂i+d,γ − n̂i+d,γ ′ )(n̂i,γ − n̂i,γ ′)〉. (7)

FIG. 8. Spectral functions for U/W = 1 and λ = 0.6. Panels (b), (c), and (d) are the orbitals 1, 2, and 3 components of the spectral function
in (a). The inverse temperature is β = 29.4/W . The white dotted line is the Fermi surface.
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FIG. 9. Cartoon sketch of the relevant charge-fluctuation pro-
cesses leading to the orbital ordered insulating state when U/W = 1
and λ = 0.6.

The charge configuration expected for the OC shown in Fig. 9
would produce an orbital correlation function Tγγ ′(d) = 0.
Figure 10(b) shows the variation of the on-site orbital cor-
relations Tγ,γ ′ (0) in the phase transition from the OSMP to
the OC state. In general, the correlation function for d = 0 is
larger than that for d 
= 0. Thus, the on-site correlation is a
good indicator for when Tγ,γ ′ (d) → 0 and can be used to trace
the formation of the orbital correlations. In the OSMP region,
Tγ,γ ′ (0) is greater than 0.1. For example, at λ = 0, T1,2(0),
T1,3(0), and T2,3(0) are 0.16, 0.14, and 0.125, respectively.
Tγ,γ ′ (0) decreases slowly initially as the e-ph coupling strength
is enhanced. Conversely, near the phase transition, Tγ,γ ′ (0)
decreases very quickly; at λ = 0.6, T1,2(0), T1,3(0), and T2,3(0)
are 0.056, 0.061, and 0.057, respectively. The nonzero value at
λ = 0.6 is likely due to the elevated temperature. We find that
T1,2(0), T1,3(0), and T2,3(0) are decreased to 0.038, 0.03, and
0.029, respectively, as the inverse temperature is decreased to

FIG. 10. (a) The electronic occupations 〈n̂γ 〉 of orbital γ as a
function of the e-ph coupling strength λ. (b) The on-site orbital
correlations Tγγ ′ between orbital γ and γ ′ as a function of λ. These
results were obtained on an N = 12 site chain. In each panel, error
bars smaller than the marker size have been suppressed for clarity.

λ

U/W

 0
 0.1
 0.2
 0.3
 0.4
 0.5

 0  0.2  0.4  0.6  0.8  1
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OC

FIG. 11. The phase diagram of the three-orbital Hubbard-
Holstein model for β = 14.7/W and 〈n̂〉 = 4. The different phases
are labeled as follows: metal (M), charge-density-wave order (CDW),
orbital selective Mott phase (OSMP), and orbital correlation (OC).

29.4/W . We expect that the correlation function tends toward
zero as T → 0, and a sharp phase transition from the OSMP
to the OC state would occur.

We traced the phase transition from the OSMP to the OC
in Fig. 10(a), which shows the variation of orbital occupations
in the phase transition from the OSMP to the OC phase at
U/W = 1 and β = 14.7/W . Here, the chain size is N = 12.
The critical e-ph coupling value λc of the phase transition from
the Mott phase to the OC state is about 0.43, where 〈n̂3〉 > 1. As
U/W = 1 and λ = 0.6, orbital occupations for three orbitals
are 1.4, 1.38, and 1.22 at β = 14.7/W , respectively. Those
occupations are changed to 1.346, 1.344, 1.31 at β = 29.4/W ,
implying that the OC state supports the same occupation on
each orbital, consistent with the electron configuration shown
in Fig. 9.

IV. DISCUSSION AND SUMMARY

We have performed a study of a three-orbital Hubbard-
Holstein model on an extended one-dimensional chain us-
ing nonperturbative DQMC. The phase diagram of the one-
dimensional model for β = 14.7/W and 〈n̂〉 = 4, shown in
Fig. 11, shares many similarities to the one found for an
infinite-dimensional degenerate two-orbital HH model with
inequivalent bandwidths [35], containing a metallic phase,
a CDW phase, and an OSMP. The metallic phase is most
prominent in small values of U and λ but penetrates into
the region of intermediate interaction strengths separating the
CDW and OSMP when U/W ∼ 2λ. The critical e-ph coupling
needed for the CDW phase transition at U = 0 in our model is
λc ∼ 0.15. The nonzero value of λc is consistent with results
for the single-band Holstein model [43,49].

At strong couplings, we found evidence for an orbital
correlation state in the phase diagram, which was not found
in the previous DMFT study. We argue that this difference
stems from the filling used in our model (〈n̂〉 = 4 here versus
〈n̂〉 = 2 in Ref. [35]) and the use of an extended cluster here
[18]. The OC state resides between the CDW phase and OSMP
and tends to extend to large Hubbard U . This region of the
phase diagram is the same one where the OSMP disappears,
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and an anti-ferro-orbital correlation was found in the λ = 0
case [18]. We expect that a phase transition occurs between the
anti-ferro-orbital order and the OC state at U/W = 2. These
results show that the phase diagram of multiorbital HH models
can exhibit remarkably rich physics as a function of interaction
strengths, doping, and other parameters.

In the past, the e-ph interaction has been neglected when
studying the FeSCs. As mentioned in the Introduction, this is
largely motivated by early ab initio calculation showing that
the dimensionless interaction strength λ is only about 0.2 [32].
However, we find that the electronic degrees of freedom in our
1D multiorbital model can be influenced significantly by small
e-ph couplings. Given that a similar result was obtained in the
case of a two-orbital Hubbard model in infinite dimensions
using DMFT [35], these results imply that the e-ph interaction

cannot be neglected a priori in multiorbital systems, and that
this conclusion holds independent of the dimension of the
system. We hope that this study will motivate further work
in this interesting area.
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