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We systematically study the meniscus on the outside of a small circular cylinder vertically immersed in a
liquid bath in a cylindrical container that is coaxial with the cylinder. The cylinder has a radius R much
smaller than the capillary length, j�1, and the container radius, L, is varied from a small value comparable
to R to 1. In the limit of L � j�1, we analytically solve the general Young-Laplace equation governing
the meniscus profile and show that the meniscus height, Dh, scales approximately with R lnðL=RÞ. In
the opposite limit where L � j�1; Dh becomes independent of L and scales with R lnðj�1=RÞ. We imple-
ment a numerical scheme to solve the general Young-Laplace equation for an arbitrary L and demonstrate
the crossover of the meniscus profile between these two limits. The crossover region has been deter-
mined to be roughly 0:4j�1KLK4j�1. An approximate analytical expression has been found for Dh,
enabling its accurate prediction at any values of L that ranges from microscopic to macroscopic scales.

� 2018 Elsevier Inc. All rights reserved.
1. Introduction

A liquid meniscus as a manifestation of capillary action is ubiq-
uitous in nature and our daily life. For example, its formation and
motion play critical roles in water uptake in plants [1]. Capillary
adhesion due to the formation of menisci between solid surfaces
makes wet hair to stick together and allows kids to build
sandcastles [2]. Menisci are also involved in many technologies
and industrial processes [3] such as meniscus lithography [4],
dip-pen nanolithography [5], dip-coating (Langmuir-Blodgett)
assembly of nanomaterials [6–8], meniscus-mediated surface
assembly of particles [9], meniscus-assisted solution printing
[10], etc.

A meniscus system frequently discussed in the literature is the
one formed on the outside of a circular cylinder that is vertically
immersed in a liquid bath. One application of this geometry is
the fabrication of fiber probes by chemical etching [11]. A cylinder
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with radius at the nanometer scale has also been attached to the
tip of an atomic force microscope to perform nano-/micro-
Whilhemy and related liquid property measurements [12]. The
shape of the meniscus is governed by the Young-Laplace equation
[13]. Extensive studies have been reported for the scenario where
the liquid bath is unbound and the lateral span of the liquid-
vapor interface is much larger than the capillary length of the liq-
uid [14–19]. Different methods have been applied in these studies,
including numerical integration [15,16] and analytical approaches
such as matched asymptotic expansions [17–19] and hodograph
transformations for cylinders with complex shapes [19]. An
approximate formula has been derived for the meniscus height,
which depends on the radius of the cylinder and the contact angle
of the liquid on the cylinder surface [14,17]. The meniscus exerts a
force that either drags the cylinder into or expels it from the liquid
depending on if the contact angle is acute or obtuse. A recent study
of the meniscus rise on a nanofiber showed that the force on the
nanofiber highly depends on the lateral size of the liquid-vapor
interface if this size is smaller than the capillary length [20].

In this paper we consider a geometry as sketched in Fig. 1 where
a small circular cylinder vertically penetrating a liquid bath that is
confined in a cylindrical container. With the cylinder and the con-
tainer being coaxial, the system has axisymmetry that enables cer-
tain analytical treatments. By fixing the contact angle on the
surface of the container to be p=2, we have a meniscus that sys-
tematically transits from being laterally confined to unbound,
when the size of the container is increased. For such a system,
the meniscus profile is governed by the general Young-Laplace
equation that was first studied by Bashforth and Adams more than
a century ago [21]. This equation has been discussed in various sys-
tems including liquid in a tube [22], sessile and pendant droplets
[23,24] and a capillary bridge between two spheres [25].

In the limit where the size of the cylindrical container is much
smaller than the capillary length, the gravitational term in the
Young-Laplace equation can be neglected and the equation
becomes analytically solvable. Solutions have been reported for
various capillary bridges between solid surfaces [26–28] and tested
with molecular dynamics simulations [29,30]. We have obtained a
solution for the meniscus in Fig. 1 based on elliptic integrals when
the lateral size of the meniscus is small and found that the menis-
cus height depends on the container size logarithmically. We fur-
ther numerically solve the full Young-Laplace equation for an
arbitrary container size and find that the meniscus height
approaches an upper limit found in some early work when the lat-
eral span of the interface is much larger than the capillary length
[14,16,17]. Finally, we find an approximate expression of the
meniscus height on the cylinder that is applicable to any lateral
size of the liquid-vapor interface. This work is the basis of a related
work on the wetting behavior of particles at a liquid-vapor inter-
Fig. 1. A rising meniscus on the outside of a circular cylinder vertically immersed in
a liquid bath confined in a cylindrical container that is coaxial with the cylinder.
face [31], where the theoretical results presented here are applied
to study the detachment of a spherical particle from a liquid bath.

2. Theoretical considerations

2.1. General equation of the meniscus shape

The geometry of the system considered in this paper is sketched
in Fig. 1. A circular cylinder with radius R is immersed in a liquid
bath confined in a cylindrical wall with radius L > R. The cylinder
and the wall are coaxial and the system is thus axisymmetric.
The shape of the meniscus in this ring-shaped tube is determined
by the surface tension of the liquid, the contact angles on the
two surfaces, and possibly gravity. Our interest is to examine the
crossover from the case where L� R is small to the case where
the cylinder is immersed in a liquid bath with an infinite lateral
span. Since in the latter limit the liquid-vapor interface is flat at
locations far away from the cylinder, we will set the contact angle
on the wall to be p=2. Then a meniscus will rise (depress) on the
outside of the cylinder if the contact angle on its surface, h1, is
smaller (larger) than p=2. The case where h1 ¼ p=2 is trivial with
the liquid–vapor interface being flat everywhere. Here we focus
on the case with h1 < p=2, where a meniscus rises on the cylinder
and generates a force to pull the cylinder into the liquid bath. How-
ever, the final results on predicting the meniscus height also apply
to the case where h1 > p=2.

The equilibrium shape of the meniscus is governed by a form of
the Young-Laplace equation studied by Bashforth and Adams
before [21],

z00

ð1þ z02Þ3=2
þ z0

rð1þ z02Þ1=2
¼ Dp

c
þ Dqgz

c
; ð1Þ

where zðrÞ is the meniscus height at distance r from the central axis

of the cylinder, z0 � dz
dr ; z

00 � d2z
dr2 ; Dp is the pressure jump from the

vapor to the liquid phase at r ¼ L and z ¼ 0; c is the surface tension
of the liquid, Dq � ql � qv is the difference of the liquid and vapor
densities, and g is the gravitational constant. A brief derivation of
this equation is provided in Appendix A. In the following discussion,
we use a water-air liquid interface at 25 �C as an example, for which
c � 0:072 N=m and Dq � 103 kg=m3.

To facilitate discussion, we define 2eH � Dp
c and j2 � Dqg

c , i.e.,

j�1 ¼
ffiffiffiffiffiffi
c

Dqg

q
is the so-called capillary length, which is a characteris-

tic length scale of the problem. For water at 25 �C, j�1 � 2:7 mm.
Eq. (1) can then be made dimensionless via a variable change

x � jr; y � jz: ð2Þ
The result is the following nonlinear differential equation

y00

ð1þ y02Þ3=2
þ y0

xð1þ y02Þ1=2
¼ 2eH

j
þ y; ð3Þ

with boundary conditions

y0 ¼ � cot h1 at x ¼ jR; ð4aÞ
y0 ¼0 at x ¼ jL and y ¼ 0: ð4bÞ

As pointed out in Ref. [22], Eq. (3) is invariant under the trans-

formation y ! �y; h1 ! p� h1, and eH ! �eH, indicating the sym-
metry between a rising and a depressing meniscus. This second-
order nonlinear differential equation can be rewritten in terms of
the local tilt angle of the liquid-vapor interface, /, as defined in
Fig. 1. Since y0 � dy

dx ¼ dz
dr ¼ tan/, Eq. (3) then becomes

d sin/
dx

þ sin/
x

¼ �2eH
j

� y: ð5Þ



Fig. 2. Meniscus profiles from the analytic solution in Eqs. (12) and (13) for L=R ¼ 5
and h1 ¼ 0� (blue solid line), 30� (green dashed line), and 60� (red dash-dotted line).
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Eq. (5) and dy
dx ¼ tan/ can be further rewritten into a pair of coupled

first-order nonlinear differential equations in terms of xð/Þ and
yð/Þ,

dx
d/

¼ � 2eH
j

þ yþ sin/
x

 !�1

cos/; ð6aÞ

dy
d/

¼ � 2eH
j

þ yþ sin/
x

 !�1

sin/: ð6bÞ

with boundary conditions

/ ¼/1 at x ¼ jR; ð7aÞ
/ ¼/2 at x ¼ jL and y ¼ 0; ð7bÞ
where /1 ¼ h1 þ p=2 and /2 ¼ p for the system sketched in Fig. 1.
Here h2 is the contact angle on the wall and is fixed at p=2 in this
paper. Generally, /2 ¼ 3p

2 � h2 for 0 6 h2 6 p.
In a general case, Eq. (6) can be numerically solved by the shoot-

ing method [32]. For the case where contact angle h1 is close to
p=2, a zero-order solution is provided in Appendix B. For a general
contact angle h1, analytical solutions of the meniscus can be found
when L � j�1, where the terms on the right sides of Eqs. (1), (3)
and (6) due to gravity are negligible [Section 2.2]. In the opposite
limit where L � j�1, the Dp term is negligible and an approximate
solution of the capillary rise on the outside of a small cylinder with
R � j�1 was found before by James using the method of asymp-
totic matching expansions [Section 2.3]. Below we discuss these
limits and numerical solutions of Eq. (6) for R � j�1 and an arbi-
trary L (which is of course larger than R). The results naturally
show the crossover from one limit (R � L � j�1) to the other
(R � j�1 � L).

2.2. Analytical solution in the L � j�1 limit

When the radius of the cylindrical wall is small, i.e., L � j�1, the
Bond number gL2Dq=c� 1. As a result, the gravity’s effect can be
ignored and Eq. (1) reduces to

z00

ð1þ z02Þ3=2
þ z0

rð1þ z02Þ1=2
¼ 2eH; ð8Þ

with eH being the local mean curvature of the liquid-vapor interface.
This equation has been solved analytically before for a capillary
bridge between a sphere and a flat surface [27,33]. Here we use
the same strategy to solve it for the meniscus in a ring-shaped con-
tainer as depicted in Fig. 1.

It is convenient to introduce reduced variables X ¼ r=R; Y ¼ z=R
and a parameter u ¼ sin/. Eq. (8) is then simplified as

�2H ¼ du
dX

þ u
X
; ð9Þ

where H is the dimensionless mean curvature defined as H � RH
�
.

The boundary conditions are

/ ¼/1 at X ¼ 1; ð9aÞ
/ ¼/2 at X ¼ l and Y ¼ 0; ð9bÞ

where /1 ¼ h1 þ p=2; /2 ¼ p, and l ¼ L=R is the scaled radius of the
cylindrical container. The solution for Eq. (9) is

u ¼ c
4HX

� HX: ð10Þ

The boundary condition in Eq. (9b) yields c ¼ 4H2l2. The other
boundary condition in Eq. (9a) can then be used to determine the
dimensionless mean curvature as
H ¼ sin/1

l2 � 1
: ð11Þ

From Eq. (10) and dY=dX ¼ tan/, we obtain the analytic solu-
tion of the meniscus profile,

Xð/Þ ¼ 1
2H

ð� sin/þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 /þ c

q
Þ; ð12Þ

Yð/Þ ¼ 1
2H

Z /

/2

� sin t þ sin2 tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 t þ c

p !
dt: ð13Þ

The solution for Yð/Þ in Eq. (13) can be written in terms of elliptic
integrals,

Yð/Þ ¼ 1
2H

ðcos/� cos/2Þ

þ
ffiffiffi
c

p
2H

Eð/; jÞ � Eð/2; jÞ � Fð/; jÞ þ Fð/2; jÞ½ 	; ð14Þ

where j2 � � 1
c ; Eð/; jÞ ¼

R /
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j2sin2t

q
dt is the incomplete elliptic

integral of the second kind, and Fð/; jÞ ¼ R /
0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�j2 sin2 t

p dt is the

incomplete elliptic integral of the first kind. The meniscus rise can
be easily computed as Dh ¼ RYð/1Þ, or explicitly,

Dh ¼ R
2H

ð1� sin h1Þ þ R
ffiffiffi
c

p
2H

Fðp=2� h1; jÞ � Eðp=2� h1; jÞ½ 	: ð15Þ

Some examples of the meniscus profile are shown in Fig. 2 for
L=R ¼ 5 and h1 ¼ 0�; 30�, and 60�, respectively.

The analytical prediction in Eq. (15) actually indicates that
Dh � R lnðL=RÞ when j�1 � L > R. To see this scaling behavior
transparently, we examine the limit where j�1 � L � R, i.e., the
cylinder is much smaller than the cylindrical container and both
are much smaller than the capillary length. In this limit we can

take l � 1 and j2 ! �1, and approximate the elliptic integrals in
Eq. (15) by series expansions. The mathematical derivation is pro-
vided in Appendix C. The final result on the meniscus height is

Dh ¼ R cos h1 ln
2L

Rð1þ sin h1Þ �
1
2

� �
: ð16Þ

A more intuitive way to see the logarithmic behavior is to note
that in the limit of l � 1, the dimensionless mean curvature H
approaches zero and Eq. (1) can be rewritten as [13,20],

r

ð1þ r02Þ1=2
¼ R cos h1; ð17Þ

where r0 � dr
dz. The solution of this equation is known as a catenary

curve [13]. The meniscus is thus a catenoid with its generatrix given
by

zðrÞ ¼ R cos h1 ln
Lþ ðL2 � R2 cos2 h1Þ1=2

r þ ðr2 � R2 cos2 h1Þ1=2
" #

: ð18Þ
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The meniscus height can be computed as Dh ¼ zðRÞ and an approx-
imate expression is

Dh ¼ R cos h1 ln
2L

Rð1þ sin h1Þ
� �

; ð19Þ

where the condition L=R � 1 P cos h1 is used. In both Eqs. (16) and
(19) the scaling dependence of Dh on R lnðL=RÞ is obvious. However,
the expression in Eq. (16) for Dh is smaller than Eq. (19) by
ðR cos h1Þ=2. This difference stems from the different boundary con-
ditions at the wall. Eq. (16) is based on Eq. (13) which describes a
meniscus that meets the wall with a contact angle p=2. However,
Eq. (19) is based on a catenary curve, for which the contact angle
at the wall is close to but not exactly p=2.

2.3. Approximate solution in the L � j�1 Limit

In the literature, the meniscus on the outside of a circular cylin-
der vertically penetrating a liquid bath was mostly investigated for
the case where the lateral span of the liquid bath is much larger
than the capillary length [14–19], i.e., L � j�1. In this limit,eH ! 0 and the Young-Laplace equation that needs to be solved
reads

y00

ð1þ y02Þ3=2
þ y0

xð1þ y02Þ1=2
¼ y: ð20Þ

The boundary condition Eq. (4a) remains the same but Eq. (4b) is
replaced by

y0 ¼ 0 at x ! 1 and y ¼ 0: ð21Þ
Fig. 3. Comparison of the meniscus height (Dh) between the Derjaguin-James
formula (Eq. (22), solid lines) and numerical results (symbols) using Huh-Scriven’s
integration scheme [16] as a function of the radius of the cylinder, R, for different
contact angles: h1 ¼ 0� (blue line and 
), 30� (orange line and �), and 60� (red line
and }). The lateral span of the liquid bath is treated as infinite by using Eq. (21) as a
boundary condition. Inset: the relative deviation of the numerical results on Dh
from the prediction based on the Derjaguin-James formula is plotted against R. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 4. The meniscus height, Dh, for different contact angles on the surface of the cylinder
The solid line is the analytical expression of Dh for L � j�1 [Eq. (15)]. The horizontal das
The vertical horizontal lines indicate where L ¼ j�1. The symbols are numerical solution
different radii: R ¼ 100 nm (red 
), 1 lm (orange �), and 10 lm (blue }). Both Dh and
legend, the reader is referred to the web version of this article.)
Equation (20) has been studied with methods of numerical inte-
gration [15,16] and matched asymptotic expansions [17,18]. The
meniscus height is approximately given by the Derjaguin-James
formula [14,17],

Dh ¼ R cos h1 ln
4j�1

R 1þ sin h1ð Þ � E
� �

; ð22Þ

where E ¼ 0:57721 . . . is the Euler-Mascheroni constant. Eq. (22) is
expected to predict the meniscus height accurately when the radius
of the cylinder is much smaller than the capillary length that is in
turn much smaller than the lateral span of the liquid bath, namely
R � j�1 � L. A comparison between the Derjaguin-James formula
and numerical results has been fully discussed in Ref. [17] for
L ! 1. This comparison is revisited in Fig. 3. Practically, for water
at room temperature it is legitimate to use the Derjaguin-James for-
mula to estimate the meniscus height on a cylinder when its radius
is less than about 0:1 mm.
3. Numerical results and discussion

As discussed in Section 2.1, the general Young-Laplace equation
[Eq. (3)] can only be solved numerically. We rewrite Eq. (3) into a
pair of coupled firs-order differential equations [Eq. (6)] and adopt
the shooting method to obtain their numerical solutions for a given
R that is much smaller than j�1 and an arbitrary L that varies from
2R to a value much larger than j�1.

Figure 4 shows numerical solutions of the meniscus height on a
circular cylinder immersed vertically in water when L is varied.
Cylinders with radii R from 100 nm to 10 lm and contact angles
h1 from 0 to 60� are used as examples. The data show the following
trends. When L is smaller than 1 mm, i.e., L=R < 102 for
R ¼ 10 lm; L=R < 103 for R ¼ 1 lm, and L=R < 104 for
R ¼ 100 nm, the meniscus height Dh is well predicted by Eq. (15),
which is derived with gravity ignored. In this limit, Dh grows with
L logarithmically. In the other limit where L is larger than 10 mm,
i.e., L=R > 103 for R ¼ 10 lm; L=R > 104 for R ¼ 1 lm, and
L=R > 105 for R ¼ 100 nm, the meniscus height fits to the
Derjaguin-James formula in Eq. (22), which is derived assuming
R � j�1 and L ! 1. For L with an intermediate value between
1 mm and 10 mm, the numerical data on the meniscus rise show
clearly the crossover between the logarithmic regime [Eq. (15)]
and the saturation regime described by the Derjaguin-James for-
mula. The latter thus provides an upper bound of the meniscus rise
on the outside of a circular cylinder with a radius much smaller
than the capillary length.

The results in Fig. 4 indicates that for a cylinder with R � j�1,
the Young-Laplace equation without gravity as shown in Eq. (8)
can be used to describe the meniscus on the outside of the cylinder
when LK0:4j�1, while the liquid bath can be considered as
: (a) h1 ¼ 0� , (b) 30� , and (c) 60� as a function of the lateral span of the liquid bath, L.
hed lines are the predictions of the Derjaguin-James formula for L � j�1 [Eq. (22)].
s of Eq. (6) for an arbitrary L using the shooting method. Data are for cylinders with
L are normalized by R. (For interpretation of the references to colour in this figure



Fig. 5. The numerical solutions of the meniscus height (symbols) at various
combinations of R and h1 as a function of L are compared to the analytical
expression in Eq. (24).
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unbounded and the Derjaguin-James formula applies when
LJ4j�1. The range 0:4j�1KLK4j�1 is the crossover region in
which the full Young-Laplace equation [Eqs. (1), (3), (5), or (6)]
needs to be employed. This conclusion seems to hold for other
liquids with different capillary lengths. For example, we have
solved Eq. (6) numerically for a hexadecane-water mixture at
25 �C, for which j�1 ¼ 4:824 mm, and found roughly the same
crossover zone.

An interesting finding is that the intersection between the solid
line from Eq. (15) and the corresponding dashed line from the
Derjaguin-James formula in Eq. (22) occurs at L � 1:85j�1 for all
the systems considered here. The relationship can be understood
if we compare Eq. (16), which is an approximate form of Eq. (15)
on the meniscus height in the limit of j�1 � L � R, to the
Derjaguin-James formula in Eq. (22). At L ¼ 2e1=2�Ej�1 � 1:85j�1,
the two predictions are equal. This estimate is in perfect alignment
with the discovery that at L � 1:85j�1, the meniscus height from
Eq. (15) matches that predicted by the Derjaguin-James formula.
In a related work, we find that L � 1:85j�1 is also the saturation
length of the lateral span of a liquid-vapor interface when dis-
cussing how the effective spring constant experienced by a detach-
ing particle depends on the lateral size of the interface [31]. Note
that Eq. (15) holds for j�1 � L > R and is thus more general than
Eq. (16), which requires j�1 � L � R. Our numerical results indi-
cate that Eq. (15) provides a good estimate of Dh for L up to about
0:4j�1.

Based on this observation and the finding that the crossover
zone, 0:4j�1KLK4j�1, is relative small, we propose that for a
cylinder with radius R � j�1 and vertically immersed in a liquid
bath with lateral span designated as L, the meniscus height on
the outside of the cylinder can be computed using Eq. (15) with
the parameter l given as follows,

l ¼ L=R if L 6 1:85j�1;

1:85j�1=R if L > 1:85j�1:

(
ð23Þ

Note that the parameter l, in addition to h1 and R, enters in the com-
putation of the parameters H; c, and j in Eq. (15). For L 6 1:85j�1,
the meniscus height Dh depends on L logarithmically while it satu-
rates to the upper bound expressed in the Derjaguin-James formula
when L > 1:85j�1. Our numerical data indicate that Eq. (15) with l
from Eq. (23) is quite accurate for the meniscus height. Even within
the crossover region 0:4j�1KLK4j�1, the relative deviation of the
actual meniscus height from the prediction based on Eqs. (15) and
(23) is less than 5%, as shown in Fig. D.1 in Appendix D.

By carefully examining the relative error of using Eqs. (15) and
(23) to compute the meniscus height Dh and how the error
depends on L; R, and h1 [see Appendix D for detail], we arrive at
an approximate analytical expression of Dh for an arbitrary L that
reads

Dh ¼ DhðellipticÞ � f1�mðjLÞ½jRð1þ sin h1Þ	0:12g; ð24Þ
where DhðellipticÞ is the meniscus height from Eq. (15) based on
elliptic integrals with the parameter l given in Eq. (23) and mðjLÞ
is a universal function given as follows,

mðxÞ ¼ 0:085 exp ðx� 1:85Þ1:83=0:74
h i

if x 6 1:85;

0:085 exp ð1:85� xÞ=0:875½ 	 if x > 1:85:

(
ð25Þ

Note that mðjLÞ is independent of the contact angle, h1, and the
cylinder radius, R. The dependence of Dh on R and h1 enters through

DhðellipticÞ and the jRð1þ sin h1Þ0:12 term in Eq. (24).
In Fig. 5, the analytical result on the meniscus height Dh in Eq.

(24) is compared with numerical solutions of the full Young-
Laplace equation rewritten as Eq. (6). A very good agreement has
been found between the two, indicating that Eq. (24) can be used
to accurately predict the meniscus height on the outside of a circu-
lar cylinder with R � j�1 for a meniscus with an arbitrary lateral
span, including the crossover zone 0:4j�1KLK4j�1. However,
Eq. (24) is a result obtained by comparing the analytical expression
of the meniscus height in the limit of jL � 1 and the numerical
results for a full range of jL. It remains an open question if the uni-
versal expression of Dh in Eq. (24) for arbitrary L; R (as long as it is
less than j�1), and h1 can be derived with an analytical approach.

The results presented in Figs. 4 and 5 are for L changing from 2R
to a value much larger than j�1 and for R changing from 100 nm to
10 lm, i.e., R � j�1. There are several limits that are of interest but
not explored in detail in this paper. In one, if R is made much larger
than j�1, then the system depicted in Fig. 1 can be regarded as a
meniscus between two flat walls (or even be reduced to a meniscus
on one flat wall if L� R � j�1) [34]. There is a crossover from the
R � j�1 limit, the focus of this paper, and the R � j�1 limit. In the
crossover, R is comparable to j�1 and the numerical procedure of
dealing with the Young-Laplace equation rewritten as Eq. (6) can
be applied. In the limit of R being reduced to nanometer scales,
the line-tension effect associated with the large curvature (R�1)
of the contact line on the surface of the cylinder may become
important [35]. In the case where L� R is small enough, factors
including disjoining pressure will kick in [29]. If L� R is further
reduced such that the molecular nature of a liquid has to be taken
into account, the continuum theory of capillarity may break down
[29]. These limits are intriguing directions for future studies.
4. Conclusions

The problem of a small circular cylinder immersed in a liquid
bath has been studied for many years. The focus was mainly on
the limit where the liquid bath is much larger than the capillary
length (i.e., L � j�1 � R) [14–19] or on the case where gravity is
negligible and the liquid-vapor interface can be described as a
catenary (i.e., j�1 � L � R) [13,20]. In this paper, we provide a
comprehensive discussion of the meniscus on the outside of a cir-
cular cylinder with R � j�1 vertically positioned in a liquid bath
with lateral span L ranging frommicroscopic to macroscopic scales.
We obtain an analytical solution of the meniscus profile based on
elliptic integrals when j�1 � L > R and the solution reduces to a
catenary when j�1 � L � R. In these solutions, the meniscus
height Dh � R lnðL=RÞ. Our numerical solutions of the full Young-
Laplace equation for an arbitrary L indicate that Dh indeed scales
with R lnðL=RÞ up to about LK0:4j�1. In the opposite limit where
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LJ4j�1, the meniscus height agrees well with the prediction of the
Derjaguin-James formula and scales with R lnðj�1=RÞ. The range
0:4j�1KLK4j�1 is the crossover region where the actual value
of Dh deviates from the prediction of either the analytical solution
based on elliptic integrals or the Derjaguin-James formula.

Our analyses reveal a universal behavior that the analytical
solution [Eq. (15)], which predicts Dh � R lnðL=RÞ, always reaches
the upper bound set by the Derjaguin-James formula at
L � 1:85j�1. Therefore, the analytical solution with its parameter
l ¼ L=R when L 6 1:85j�1 and capped at l ¼ 1:85j�1=R when
L > 1:85j�1 can be used to estimate the meniscus height Dh. The
relative deviation of the actual value of Dh determined via numer-
ical solutions from this estimate is found to be only noticeable in
the crossover region but still less than 5%. We further find that
the relative errors at different R and contact angles at the surface
of the cylinder, if properly scaled, as a function of jL all collapse
to a master curve. With a fitting function to this master curve,
we obtain an analytical expression [Eq. (24)] that can be used for
accurate prediction of Dh for the whole range of L frommicroscopic
to macroscopic scales including the crossover zone. Although in
this paper we only consider cases with the contact angle on the
wall being fixed at p=2, the theoretical analyses and numerical
treatments of the general Young–Laplace equation can also be
extended to more general cases with other contact angles at the
wall surface.
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Appendix A. Derivation of Young-Laplace equation

The profile of a meniscus is governed by Eq. (1), which has been
discussed extensively for the geometry of sessile and pendant
drops. Here we provide a simple derivation of this equation. The
energy of a liquid bath bound by a cylindrical container and a
meniscus on the outside of a cylinder at the center of the container
(Fig. 1) is a sum of surface energy and gravitational terms,
G ¼ cSþ DpV þ Ug , where c is the surface tension of the liquid, S
is the surface area of the liquid-vapor interface, Dp is a Lagrange
multiplier, V is the volume of the liquid bath which is fixed, and
Ug is the potential energy of the liquid in the gravitational field.
The meniscus profile can be found by minimizing G, which can
be written in terms of the surface profile zðrÞ,

G ¼ 2pc
Z L

R
r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z02

p
dr þ 2pDp

Z L

R
rzdr þ pDqg

Z L

R
rz2 dr; ðA:1Þ

We seek the surface profile that will make the energy function
G ¼ R f ðz; z0; rÞdr stationary, i.e., dG ¼ 0. The resulting Euler-
Lagrange equation is

d
dr

@f
@z0

� @f
@z

¼ 0: ðA:2Þ

After some algebra, we obtain the following equation,

c
z00

ð1þ z02Þ3=2
þ z0

rð1þ z02Þ1=2
" #

¼ Dpþ Dqgz; ðA:3Þ

where the left hand side comes from the surface energy and the
right hand side originates from the volume of the liquid bath being
fixed and the gravitational potential energy, respectively. This equa-
tion is Eq. (1) in the main text.

Appendix B. Solution of zero-order

If the contact angle h1 on the cylinder in Fig. 1 is close to p=2,
the resulting liquid-vapor interface is almost flat since the contact
angle on the wall surface is fixed at p=2. In this case z0 ¼ tan/ � 1
and Eq. (1) can be approximated as

2eH þ j2z ¼ 1
r

d
dr

rz0

ð1þ z02Þ1=2
" #

� 1
r

d
dr

rz0ð1þOðz02ÞÞ� �
; ðB:1Þ

with the following boundary conditions,

/ ¼/1 at r ¼ R; ðB:2aÞ
/ ¼/2 at r ¼ L and z ¼ 0; ðB:2bÞ
where /1 ¼ h1 þ p=2; /2 ¼ p. The solution of Eq. (B.1) which satis-
fies the boundary condition Eq. (B.2b) is,

z ¼ 2eH
j2

K0ðjrÞ
K0ðjLÞ � 1
� �

; ðB:3Þ

and the angle / is given by

tan/ ¼ �2eH
j

K1ðjrÞ
K0ðjLÞ ; ðB:4Þ

where K0 and K1 are modified Bessel functions of second kind of

order zero and one, respectively. The undetermined constant eH
can be found using the other boundary condition Eq. (B.2a) and
the result is

eH ¼ �j
2
tan/1

K0ðjLÞ
K1ðjRÞ : ðB:5Þ
Appendix C. Expansion of elliptic integrals

Here we derive the series expansions of incomplete elliptic inte-

grals Fð/; jÞ and Eð/; jÞ in the limit of j2 ! �1. To facilitate the dis-
cussion it is helpful to introduce a small parameter � > 0 and

j2 ¼ � 1
�2; the limit j2 ! �1 thus corresponds to �! 0. Below we

use the incomplete elliptic integral of second kind, Eð/; jÞ, as an
example. A similar expansion can be performed for Fð/; jÞ.

Eð/; jÞ ¼
Z /

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j2 sin2 t

q
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In this derivation we have employed the following expansion
1ffiffiffiffiffiffiffiffiffiffiffi

1��2t2
p ¼ 1þ 1

2 �
2t2 þOð�4t4Þ and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2t2

p
¼ 1þ 1
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and assumed that sin/ >
ffiffiffi
�

p
. The expansion of the incomplete
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elliptic integral of first kind, Fð/; jÞ, can be obtained similarly and
the result is

Fð/; jÞ ¼ �ð� ln �þ 2 ln2� ln
1þ cos/
sin/

Þ þ Oð�2Þ: ðC:2Þ

By substituting Eqs. (C.1) and (C.1) into Eq. (15), we arrive at

Dh ¼ R cos h1 ln
2L

Rð1þ sin h1Þ �
1
2

� �
; ðC:3Þ

which is Eq. (16) in the main text. Here the relations H ¼ sin/1

l2�1
� cos h1

l2

and � ¼
ffiffiffiffiffiffiffiffiffiffi
�j�2

q
¼ ffiffiffi

c
p

are used.

Appendix D. Relative error of Eq. (15) on predicting h

In order to obtain an even more accurate expression of the
meniscus height that applies to R � j�1 and an arbitrary L, we
denote the meniscus height predicted in Eq. (15) using elliptic inte-
grals with the parameter l given in Eq. (23) as DhðellipticÞ. The full
numerical solution of Eq. (6) for an arbitrary L is denoted as
DhðactualÞ. The relative error of using Eq. (15) to predict the menis-
cus height is thus given by

dh ¼ DhðellipticÞ � DhðactualÞ
DhðellipticÞ : ðD:1Þ

In Fig. D.1(a), dh is shown as a function of L that is normalized by
j�1 for several combinations of the cylinder radius, R, and the con-
tact angle on its surface, h1. As expected, the peak value of the rel-
ative error occurs at jL ¼ 1:85. We find that all the data collapse to

a master curve if we plot dh� ½jRð1þ sin h1Þ	�0:12 against jL, as
shown in Fig. D.1(b). The master curve can be fit with the kink func-
tion given in Eq. (25) [dashed blue line in Fig. D.1(b)]. With this uni-
versal fit to the collapsed data of relative error, we arrive at Eq. (24)
Fig. D.1. (a) The relative error dh defined in Eq. (D.1) as a function of jL for various
combinations of R and h1. (b) Data in (a) are collapsed onto a master curve when
dh� ½jRð1þ sin h1Þ	�0:12 is plotted against jL; the blue dashed line is the fit in Eq.
(25). In both (a) and (b) the gray zone indicates the crossover region
0:4j�1KLK4j�1. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
in the main text that can be used to accurately predict the meniscus
height for an arbitrary L.

References

[1] A.J. McElrone, B. Choat, G.A. Gambetta, C.R. Brodersen, Water uptake and
transport in vascular plants, Nat. Educ. Knowl. 4 (2013) 6. https://
www.nature.com/scitable/knowledge/library/water-uptake-and-transport-in-
vascular-plants-103016037 .

[2] D.J. Hornbaker, R. Albert, I. Albert, A.-L. Barabasi, P. Schiffer, What keeps
sandcastles standing?, Nature 387 (6635) (1997) 765, https://doiorg/10.1038/
42831. http://www.nature.com/nature/journal/v387/n6635/full/387765a0.
html%5Cnhttp://www.nature.com/nature/journal/v387/n6635/pdf/387765a0.
pdf .

[3] Y. Yuan, T.R. Lee, Contact angle and wetting properties, in: G. Bracco, B. Holst
(Eds.), Surface Science Techniques, Springer, Berlin, Heidelberg, 2013, pp. 3–34,
https://doi.org/10.1007/978-3-642-34243-1_1.

[4] S.H. Kang, N. Wu, A. Grinthal, J. Aizenberg, Meniscus lithography: evaporation-
induced self-organization of pillar arrays into Moiré patterns, Phys. Rev. Lett.
107 (2011) 177802, https://doi.org/10.1103/PhysRevLett.107.177802.
https://link.aps.org/doi/10.1103/PhysRevLett.107.177802 .

[5] R.D. Piner, J. Zhu, F. Xu, S. Hong, C.A. Mirkin, ‘Dip-Pen’ nanolithography, Science
283 (5402) (1999) 661–663, https://doi.org/10.1126/science.283.5402.661.
http://science.sciencemag.org/content/283/5402/661 .

[6] M. Ghosh, F. Fan, K.J. Stebe, Spontaneous pattern formation by dip coating of
colloidal suspensions on homogeneous surfaces, Langmuir 23 (4) (2007) 2180–
2183, https://doi.org/10.1021/la062150e.

[7] A.R. Tao, J. Huang, P. Yang, Langmuir-Blodgettry of nanocrystals and
nanowires, Acc. Chem. Res. 41 (12) (2008) 1662–1673, https://doi.org/
10.1021/ar8000525.

[8] L.J. Cote, F. Kim, J. Huang, Langmuir-Blodgett assembly of graphite oxide single
layers, J. Am. Chem. Soc. 131 (3) (2009) 1043–1049, https://doi.org/
10.1021/ja806262m.

[9] M. Cavallaro, L. Botto, E.P. Lewandowski, M. Wang, K.J. Stebe, Curvature-driven
capillary migration and assembly of rod-like particles, Proc. Natl. Acad. Sci. 108
(52) (2011) 20923–20928, https://doi.org/10.1073/pnas.1116344108. http://
www.pnas.org/cgi/doi/10.1073/pnas.1116344108 .

[10] M. He, B. Li, X. Cui, B. Jiang, Y. He, Y. Chen, D. O’Neil, P. Szymanski, M.A. EI-
Sayed, J. Huang, Z. Lin, Meniscus-assisted solution printing of large-grained
perovskite films for high-efficiency solar cells, Nat. Commun. 8 (2017) 16045,
https://doi.org/10.1038/ncomms16045. https://www.nature.com/articles/
ncomms16045 .

[11] K.M. Takahashi, J. Colloid Interface Sci. 134 (1) (1990) 181–187, https://doi.
org/10.1016/0021-9797(90)90265-P. https://
www.sciencedirect.com/science/article/pii/002197979090265P?via .

[12] M.M. Yazdanpanah, M. Hosseini, S. Pabba, S.M. Berry, V.V. Dobrokhotov, A.
Safir, R.S. Keynton, R.W. Cohn, Micro-Wilhelmy and related liquid property
measurements using constant-diameter nanoneedle-tipped Atomic Force
Microscope probes, Langmuir 24 (23) (2008) 13753–13764, https://doi.org/
10.1021/la802820u.

[13] P.G. de Gennes, F. Brochard-Wyart, D. Quéré, Capillarity and Wetting
Phenomena: Drops, Bubbles, Pearls, Waves, Springer, New York, USA, 2004,
https://doi.org/10.1007/978-0-387-21656-0. http://link.springer.com/10.
1007/978-0-387-21656-0 .

[14] B. Derjaguin, Theory of the distortion of a plane surface of a liquid by small
objects and its application to the measurement of the contact angle of thin
filaments and fibres, Dokl. Akad. Nauk SSSR 51 (519) (1946) 5622.

[15] D.A. White, J.A. Tallmadge, Static menisci on the outside of cylinders, J. Fluid
Mech. 23 (02) (1965) 325, https://doi.org/10.1017/S0022112065001398.
http://www.journals.cambridge.org/abstract_S0022112065001398 .

[16] C. Huh, L. Scriven, Shapes of axisymmetric fluid interfaces of unbounded
extent, J. Colloid Interface Sci. 30 (3) (1969) 323–337, https://doi.org/10.1016/
0021-9797(69)90399-3. https://www.sciencedirect.com/science/article/pii/
0021979769903993 .

[17] D.F. James, The meniscus on the outside of a small circular cylinder, J. Fluid
Mech. 63 (04) (1974) 657, https://doi.org/10.1017/S0022112074002126.
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/
article/meniscus-on-the-outside-of-a-small-circular-cylinder/
BB8B90EF3071DB261AC2776937468CD9 .

[18] L.L. Lo, The meniscus on a needle – a lesson in matching, J. Fluid Mech. 132 (-1)
(1983) 65, https://doi.org/10.1017/S0022112083001470. https://
www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/the-
meniscus-on-a-needle-a-lesson-in-matching/
E9A5E037C39DEC59927C8EDFCCF8CC83 .

[19] M.M. Alimov, K.G. Kornev, Meniscus on a shaped fibre: singularities and
hodograph formulation, Proc. R. Soc. A Math. Phys. Eng. Sci. 470 (2168) (2014)
20140113, https://doi.org/10.1098/rspa.2014.0113. http://rspa.
royalsocietypublishing.org/cgi/doi/10.1098/rspa.2014.0113 .

[20] J. Dupré de Baubigny, M. Benzaquen, L. Fabié, M. Delmas, J.P. Aimé, M. Legros,
T. Ondarçuhu, Shape and effective spring constant of liquid interfaces probed
at the nanometer scale: finite size effects, Langmuir 31 (36) (2015) 9790–
9798, https://doi.org/10.1021/acs.langmuir.5b02607. https://pubs.acs.
org/doi/abs/10.1021/acs.langmuir.5b02607 .

[21] F. Bashforth, J.C. Adams, An Attempt to Test the Theories of Capillary Action,
Cambridge University Press, Cambridge, UK, 1883.

https://www.nature.com/scitable/knowledge/library/water-uptake-and-transport-in-vascular-plants-103016037
https://www.nature.com/scitable/knowledge/library/water-uptake-and-transport-in-vascular-plants-103016037
https://www.nature.com/scitable/knowledge/library/water-uptake-and-transport-in-vascular-plants-103016037
https://doi.org/10.1038/42831
https://doi.org/10.1038/42831
http://www.nature.com/nature/journal/v387/n6635/full/387765a0.html%5Cnhttp://www.nature.com/nature/journal/v387/n6635/pdf/387765a0.pdf
http://www.nature.com/nature/journal/v387/n6635/full/387765a0.html%5Cnhttp://www.nature.com/nature/journal/v387/n6635/pdf/387765a0.pdf
http://www.nature.com/nature/journal/v387/n6635/full/387765a0.html%5Cnhttp://www.nature.com/nature/journal/v387/n6635/pdf/387765a0.pdf
https://doi.org/10.1007/978-3-642-34243-1_1
https://doi.org/10.1103/PhysRevLett.107.177802
https://link.aps.org/doi/10.1103/PhysRevLett.107.177802
https://doi.org/10.1126/science.283.5402.661
http://science.sciencemag.org/content/283/5402/661
https://doi.org/10.1021/la062150e
https://doi.org/10.1021/ar8000525
https://doi.org/10.1021/ar8000525
https://doi.org/10.1021/ja806262m
https://doi.org/10.1021/ja806262m
https://doi.org/10.1073/pnas.1116344108
http://www.pnas.org/cgi/doi/10.1073/pnas.1116344108
http://www.pnas.org/cgi/doi/10.1073/pnas.1116344108
https://doi.org/10.1038/ncomms16045
https://www.nature.com/articles/ncomms16045
https://www.nature.com/articles/ncomms16045
https://doi.org/10.1016/0021-9797(90)90265-P
https://doi.org/10.1016/0021-9797(90)90265-P
https://www.sciencedirect.com/science/article/pii/002197979090265P?via
https://www.sciencedirect.com/science/article/pii/002197979090265P?via
https://doi.org/10.1021/la802820u
https://doi.org/10.1021/la802820u
https://doi.org/10.1007/978-0-387-21656-0
http://link.springer.com/10.1007/978-0-387-21656-0
http://link.springer.com/10.1007/978-0-387-21656-0
http://refhub.elsevier.com/S0021-9797(18)31002-6/h0070
http://refhub.elsevier.com/S0021-9797(18)31002-6/h0070
http://refhub.elsevier.com/S0021-9797(18)31002-6/h0070
https://doi.org/10.1017/S0022112065001398
http://www.journals.cambridge.org/abstract_S0022112065001398
https://doi.org/10.1016/0021-9797(69)90399-3
https://doi.org/10.1016/0021-9797(69)90399-3
https://www.sciencedirect.com/science/article/pii/0021979769903993
https://www.sciencedirect.com/science/article/pii/0021979769903993
https://doi.org/10.1017/S0022112074002126
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/meniscus-on-the-outside-of-a-small-circular-cylinder/BB8B90EF3071DB261AC2776937468CD9
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/meniscus-on-the-outside-of-a-small-circular-cylinder/BB8B90EF3071DB261AC2776937468CD9
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/meniscus-on-the-outside-of-a-small-circular-cylinder/BB8B90EF3071DB261AC2776937468CD9
https://doi.org/10.1017/S0022112083001470
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/the-meniscus-on-a-needle-a-lesson-in-matching/E9A5E037C39DEC59927C8EDFCCF8CC83
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/the-meniscus-on-a-needle-a-lesson-in-matching/E9A5E037C39DEC59927C8EDFCCF8CC83
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/the-meniscus-on-a-needle-a-lesson-in-matching/E9A5E037C39DEC59927C8EDFCCF8CC83
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/the-meniscus-on-a-needle-a-lesson-in-matching/E9A5E037C39DEC59927C8EDFCCF8CC83
https://doi.org/10.1098/rspa.2014.0113
http://rspa.royalsocietypublishing.org/cgi/doi/10.1098/rspa.2014.0113
http://rspa.royalsocietypublishing.org/cgi/doi/10.1098/rspa.2014.0113
https://doi.org/10.1021/acs.langmuir.5b02607
https://pubs.acs.org/doi/abs/10.1021/acs.langmuir.5b02607
https://pubs.acs.org/doi/abs/10.1021/acs.langmuir.5b02607
http://refhub.elsevier.com/S0021-9797(18)31002-6/h0105
http://refhub.elsevier.com/S0021-9797(18)31002-6/h0105
http://refhub.elsevier.com/S0021-9797(18)31002-6/h0105


408 Y. Tang, S. Cheng / Journal of Colloid and Interface Science 533 (2019) 401–408
[22] P. Concus, Static menisci in a vertical right circular cylinder, J. Fluid Mech. 34
(3) (1968) 481–495, https://doi.org/10.1017/S002211206800203X.

[23] S.B.G. O’brien, On the shape of small sessile and pendant drops by singular
perturbation techniques, J. Fluid Mech. 233 (519) (1991) 519–537, https://doi.
org/10.1017/S0022112091000587.

[24] S. Srinivasan, G.H. McKinley, R.E. Cohen, Assessing the accuracy of contact
angle measurements for sessile drops on liquid-repellent surfaces, Langmuir
27 (22) (2011) 13582–13589, https://doi.org/10.1021/la2031208. https://
pubs.acs.org/doi/abs/10.1021/la2031208 .

[25] D.N. Mazzone, G.I. Tardos, R. Pfeffer, The effect of gravity on the shape and
strength of a liquid bridge between two spheres, J. Colloid Interface Sci. 113 (2)
(1986) 544–556, https://doi.org/10.1016/0021-9797(86)90187-6. https://
www.sciencedirect.com/science/article/pii/0021979786901876 .

[26] H.J. Butt, M. Kappl, Normal capillary forces, Adv. Colloid Interface Sci. 146 (1-2)
(2009) 48–60, https://doi.org/10.1016/j.cis.2008.10.002.

[27] F.M. Orr, L.E. Scriven, A.P. Rivas, Pendular rings between solids: meniscus
properties and capillary force, J. Fluid Mech. 67 (04) (1975) 723, https://doi.
org/10.1017/S0022112075000572. http://www.journals.cambridge.org/
abstract_S0022112075000572 .

[28] N.P. Kruyt, O. Millet, An analytical theory for the capillary bridge force
between spheres, J. Fluid Mech. 812 (2017) 129–151, https://doi.org/10.1017/
jfm.2016.790.
[29] S. Cheng, M.O. Robbins, Capillary adhesion at the nanometer scale, Phys. Rev. E
89 (6) (2014) 062402, https://doi.org/10.1103/PhysRevE.89.062402. https://
journals.aps.org/pre/abstract/10.1103/PhysRevE.89.062402 .

[30] S. Cheng, M.O. Robbins, Nanocapillary adhesion between parallel plates,
Langmuir 32 (31) (2016) 7788–7795, https://doi.org/10.1021/acs.
langmuir.6b02024.

[31] Y. Tang, S. Cheng, Capillary forces on a small particle at a liquid-vapor
interface: theory and simulation, Also Available at: arXiv preprint
arXiv:1806.06493.

[32] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes
Third Edition: The Art of Scientific Computing, third ed., Cambridge University
Press, New York, USA, 2007.

[33] B.Y. Rubinstein, L.G. Fel, Theory of axisymmetric pendular rings, J. Colloid
Interface Sci. 417 (2014) 37–50, https://doi.org/10.1016/j.jcis.2013.11.038.

[34] L. Landau, E. Lifshitz, Fluid Mechanics, Elsevier Science, 1987.
https://books.google.com/books?id=eVKbCgAAQBAJ .

[35] B.M. Law, S.P. McBride, J.Y. Wang, H.S. Wi, G. Paneru, S. Betelu, B. Ushijima, Y.
Takata, B. Flanders, F. Bresme, H. Matsubara, T. Takiue, M. Aratono, Line
tension and its influence on droplets and particles at surfaces, Prog. Surf. Sci.
92 (1) (2017) 1–39, https://doi.org/10.1016/j.progsurf.2016.12.002. http://
www.sciencedirect.com/science/article/pii/S0079681616300363 .

https://doi.org/10.1017/S002211206800203X
https://doi.org/10.1017/S0022112091000587
https://doi.org/10.1017/S0022112091000587
https://doi.org/10.1021/la2031208
https://pubs.acs.org/doi/abs/10.1021/la2031208
https://pubs.acs.org/doi/abs/10.1021/la2031208
https://doi.org/10.1016/0021-9797(86)90187-6
https://www.sciencedirect.com/science/article/pii/0021979786901876
https://www.sciencedirect.com/science/article/pii/0021979786901876
https://doi.org/10.1016/j.cis.2008.10.002
https://doi.org/10.1017/S0022112075000572
https://doi.org/10.1017/S0022112075000572
http://www.journals.cambridge.org/abstract_S0022112075000572
http://www.journals.cambridge.org/abstract_S0022112075000572
https://doi.org/10.1017/jfm.2016.790
https://doi.org/10.1017/jfm.2016.790
https://doi.org/10.1103/PhysRevE.89.062402
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.89.062402
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.89.062402
https://doi.org/10.1021/acs.langmuir.6b02024
https://doi.org/10.1021/acs.langmuir.6b02024
http://refhub.elsevier.com/S0021-9797(18)31002-6/h0160
http://refhub.elsevier.com/S0021-9797(18)31002-6/h0160
http://refhub.elsevier.com/S0021-9797(18)31002-6/h0160
http://refhub.elsevier.com/S0021-9797(18)31002-6/h0160
https://doi.org/10.1016/j.jcis.2013.11.038
https://books.google.com/books?id=eVKbCgAAQBAJ
https://doi.org/10.1016/j.progsurf.2016.12.002
http://www.sciencedirect.com/science/article/pii/S0079681616300363
http://www.sciencedirect.com/science/article/pii/S0079681616300363

	The meniscus on the outside of a circular cylinder: From microscopic to macroscopic scales
	1 Introduction
	2 Theoretical considerations
	2.1 General equation of the meniscus shape
	2.2 Analytical solution in the [$]L \ll {\kappa}^{-1}[$] limit
	2.3 Approximate solution in the [$]L \gg {\kappa}^{-1}[$] Limit

	3 Numerical results and discussion
	4 Conclusions
	Acknowledgements
	Appendix A Derivation of Young-Laplace equation
	Appendix B Solution of zero-order
	Appendix C Expansion of elliptic integrals
	Appendix D Relative error of Eq. (15) on predicting [$] \rDelta h[$]
	References


